INTEGRATING COMMON PROBLEMS FOR SHARED SOLUTIONS TECHNICAL WORKSHOP # REDUCTION/ELIMINATION OF EMISSIONS FROM HEXAVALENT CHROME (Cr6+) PLATING BATHS ### IDENTITY OF CHROMIUM Oxidation state of +2 to +6; Chromium occurs in the environment predominantly in: Trivalent state - occurs naturally Hexavalent state, metallic chromium - industrial processes - Soils and rocks contain small amounts of chromium in the trivalent state - * Physicochemical properties Solubility Cr6+ = Soluble Cr3+ = Insoluble * Chromium III less toxic than chromium (VI) ### DISTRIBUTION OF CHROMIUM COMPOUNDS - SOIL Cr³⁺ predominates Cr⁶⁺ is easily reduced to Cr³⁺ and its occurance is often the result of human activity - WATER Hidroxides and complexes of chromium (III) In surface waters, ratio of Cr(III) to Cr(VI) varies widely - AIR Present in form of particles or aerosols Both trivalent and hexavalent chromium are released into the air #### EFFECTS OF Cr6+ ON HUMAN HEALTH - * Respiratory problems - * Gastrointestinal effects - * Reproductive problems ### MAJOR USES - * Leather tanning industry - * Manufacture of catalysts - Pigments and paints - Fungicides - Ceramic and glass industry - Photography - * Chromium alloys and chromium metal production - Chromium plating - * Corrosion control ### **LEGISLATION** #### Air emissions Ordinance n.°286/93, March 12 Pb + $$Cr + Cu = 5 \text{ mg/m}^3\text{N}$$ $$CaCrO_4 = 1 \text{ mg/m}^3 \text{N (for } \geq 5 \text{ g/h)}$$ $$Cr_2(CrO_4)_3 = 1 \text{ mg/m}^3 \text{N (for } \ge 5 \text{ g/h)}$$ $$SrCrO_4 = 1 \text{ mg/m}^3 \text{N (for } \geq 5 \text{ g/h)}$$ PbCrO₄ = 5 mg/m³N (for $$\geq$$ 25 g/h) $$K_2CrO_4 + ZnCrO_4 = 0.1 \text{ mg/m}^3N \text{ (for } \ge 0.5 \text{ g/h)}$$ ### LEGISLATION #### Wastewater ❖ Industry discharge in surface water: DL n.º 236/98, August 1 Emission Limits: Cr(VI) = 0.1 mg/l Cr (VI) + Cr (III) = 2 mg/l * Metal Finishing Industry: Ordinance n.° 1030/93, October 14 Emission Limits: Cr (VI) = 0,1 mg/l Cr (III) = 3 mg/l * Leather Tanning Industry: Ordinance n.º 512/92, June 22 Emission Limit: Cr (VI) + Cr (III) = 2 mg/l ### **LEGISLATION** # Occupational Environment Portuguese Standard - NP 1796, 1998 ### Personal Exposure Limit chromium (metal and its compounds), as $Cr=0.5 \text{ mg/m}^3$ zinc chromate, as $Cr=0.01 \text{ mg/m}^3$ lead chromate, as $Cr=0.05 \text{ mg/m}^3$ tert- Butyl chromate, as $CrO_3=0.1 \text{ mg/m}^3$ chromium (soluble salts and chromic), as $Cr=0.5 \text{ mg/m}^3$ Cr (VI), soluble in water, as $Cr=0.05 \text{ mg/m}^3$ Cr (VI), insoluble in water, as $Cr=0.05 \text{ mg/m}^3$ # Alternatives to Hex-Chrome - * Alternative coatings, and processes exist - * Critical processes and customer preference limit these. - *As environmental pressures continue, more alternatives are made available, however customer expectations make some alternatives less possible to implement. - *While implementation of an alternative may not be possible, process changes or treatment of emissions is possible to keep process within present and forcasted regulations. # Emissions from Hard Chrome Plating ### Existing Technology to Reduce Emissions #### Problem - Hydrogen gas is released in the hard chrome plating process. - *This gas entrains chromic acid and a mist is formed at surface of bath. - * Treatment of emissions or controls are necessary to prevent chromic acid mist from entering plating rooom environment and the environment. #### Some options available for reducing emissions - *Addition of chemical supressants to plating bath that reduce misting - *Chromium extraction from collected air stream prior to discharge at stack - *Encapsulation of plating bath with hood to contain chromium mist. (zero or near to zero discharge of chromium) ### Fume Supressants #### Chemical Fume Supressants ❖ Chemical fume supressants are added directly to chromic acid bath in order to reduce or supresses fumes or mists at the surface of an electroplating bath or solution. #### Fume Supressants - *Temporary fume supressants are dissipated by the decomposition of the active chemical components - *Permanent fume supressants are dissipated by drag-out of the solution. #### Fume Supressants: Foam Blankets & Wetting Agents - Foam Blankets physically supress mists - Wetting agents lower the surface chemistry of bath to reduce misting. ### Mist Supressants #### Plastic Floating Spheres *75% reduction with 3 inch layer thickness of 1.5" spheres #### Moisture Extractors - ❖ Vertical Moisture Extractor - *Centrifugal force to remove chromic acid mist from a vertical exaust stream - *Smaller particles can pass though causing emission limits to be exceeded - ❖Blade mist eliminators (Horizontal air stream) - *Vary in design and efficiency influenced by gas velocity, blade spacing and shape, seal integrity and cleaning frequency. - *30% of plating shops use this technology in US as primary emission reduction, second only to packed bed scrubbers. (1994 est.) # Mist Supressants #### Scrubbers (Packed Bed Scrubbers or "Wet Packed Scrubbers") - *Entrained chromic acid in air stream is transferred to wetted packed media, and then to a volume of recirculated fluid - Scrubbers absorb gaseous component of chromic acid into liquid phase of recirculated fluid - *Excess liquid is removed from final air stream - *Multiple beds can increase efficiency #### Disadvantage *Increase in liquid hazardous waste while solving air pollution problems if the system is not designed as closed loop ### Mist Supressants #### Mesh Pad Mist Eliminators (Vertical or Horizontal Airflow) - Fluids not used during typical air-cleaning operations - *Emissions reduced by directing air through multiple layers of plastic filament - *Efficiency is dependent upon: particle or droplet size, air velocity through pad, filament diameter, filament orientation and pad depth - *Works through intertal impaction of droplets and interception of droplets by downstream fibers in mesh pad - *Multiple layers and different types of filaments increase efficency - High efficiency without extreme pressue drops or clogging of mesh pads within system can be achieved with proper setup and design - *Many variations and setups exist with this type of system # Mist Supressants #### Fiber Bed Mist Eliminators - Use of very fine filaments in a fiber bed mist eliminator targets very small particles of chromic acid mist - ❖ Similar to mesh pad systems, intertal forces eliminate larger particles - Very small particles eliminated through Brownian motion - *Horizontal airflow is directed through vertical cylinder that contains filter material. - * Extracted particles coalesce into droplest on fiber surface and drain via gravity through drain on bottom of the unit. - Can suffer from cloging like mesh pads, but can be alleviated by prefiltering or positioning fiber bed after a mesh pad mist eliminator. # Plating Bath Containment #### Encapsulating Tank Covers (Emission Elimination Device or EED) - Technology developed more recently - ❖Cover placed over tank and the mist beneath the cover is contained - ❖The gases evolved during the plating process pass through a selective membrane system - Typically only oxygen and hydrogen are emitted - *Prevents nearly all emission of chromic acid to the air - *Worker exposure and environmental emission are eliminated as risk areas # Plating Bath Containment #### EED Advantages - Emission does not contain any hazardous properties - ❖ System typically does not require an exaust system or stack to vent process air outside of facility because all emissions are contained under the hood - *No exaust system and no fan motors allow for increased energy efficiency within a facility - *No chromium bearing solutions or wastes are generated (as with wash down cycles for mesh pads or wet packed scrubbers) #### Possible Drawbacks - *Plating in tank must be stopped before parts can be added or removed - *Requires either identical start/stop or ability for parts to undergo several plating cycles because of design # Combination Systems - * All these and other types of chrome plating systems can be combined in various ways to best accomidate a facility. - * Advantages of using multiple devices in one system: - Chemicals can be segregated - Duct work can be kept clean - Inlet loading can be reduced on end-of-line unit. # Next Steps #### Stakeholders Already Identified - * Assist in identifying other stakeholders within the plating industry who may have the need to reduce Chrome emissions. - ❖Information from stakeholders necessary to build PAR and JTP - Design and purpose of current plating shop - *Identify current chrome emissions levels and desired levels ### Next Steps #### C3P - Continue to identify stakeholders within plating industry - Build PAR and JTP - Build Test Plan, demonstrate and validate alternative technologies - * Work with stakeholders to implement validated technologies